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Switching between bistable states in a discrete nonlinear model with long-range dispersion

Magnus Johansson,1 Yuri B. Gaididei,2 Peter L. Christiansen,1 and K. O” . Rasmussen1
1Department of Mathematical Modelling, The Technical University of Denmark, DK-2800 Lyngby, Denmark

2Institute for Theoretical Physics, Metrologicheskaya Street 14B, 252 143 Kiev 143, Ukraine
~Received 26 September 1997; revised manuscript received 8 December 1997!

In the framework of a discrete nonlinear Schro¨dinger equation with long-range dispersion, we propose a
general mechanism for obtaining a controlled switching between bistable localized excitations. We show that
the application of a spatially symmetric kick leads to the excitation of an internal breathing mode and that
switching between narrow, pinned states and broad, mobile states with only small radiative losses occurs when
the kick strength exceeds a threshold value. This mechanism could be important for controlling energy storage
and transport in molecular systems.@S1063-651X~98!01004-6#

PACS number~s!: 63.20.Pw, 63.20.Ry
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Describing the storage and transport of energy and ch
in the presence of discreteness, dispersion, and
interaction is a problem of major importance in solid-sta
physics, biophysics, and optics. Applications include, e
polaron formation in electron-lattice coupled systems, loc
ization of vibrational energy in proteins, and localization
optical beams in arrays of nonlinear waveguides. The
crete nonlinear Schro¨dinger~DNLS! equation has been use
extensively in the literature to model these phenomena an
is known to have exact spatially localized, time-periodic s
lutions ~breathers! that are stationary states@1–4#. However,
since the standard DNLS equation only includes dispers
coupling between nearest neighbors, it does not appro
ately describe situations where long-range interactions
important~e.g., the DNA molecule contains charged grou
and therefore the vibration-excitation transfer is due
dipole-dipole interactions decaying with distancer as 1/r 3!.
To describe such situations, a DNLS equation with lon
range coupling was proposed in@5#. With the dispersive cou-
pling decaying as 1/r s the coexistence of three on-site loca
ized stationary states having the same value of the norm
found when 2,s&3.03. A further analysis showed that
the interval of multistability, the three different states cou
be classified as one stable, broad~‘‘continuumlike’’ ! state
with high mobility; one unstable, intermediate state; and o
stable, narrow~‘‘intrinsically localized’’ or ‘‘discrete’’! state
that is pinned to the lattice. This bistability phenomenon
generic~e.g., for exponentially decreasing couplinge2br it
occurs whenb&1.70! and can be understood as the result
two competing length scales, one due to the long-range
ture of the dispersive coupling and the other resulting fr
the balance between nonlinearity and dispersion.

Having established the existence of bistable station
states in the nonlocal DNLS system, a natural question
arises concerns the possibility ofswitching between the
stable states under the influence of some external pertu
tions. Switching of this type is important in the description
nonlinear transport and storage of energy in biomolecu
such as DNA since a mobile continuumlike state can prov
action at a distance, while the switching to a discrete, pin
state can facilitate the structural changes of DNA@6#. It is the
purpose of the present paper to show that switching
occur if the system is perturbed in a way so that an inter
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spatially localized and symmetric mode~‘‘breathing mode’’!
of the stationary state is excited above a threshold value.
importance of internal modes for the dynamics of nonline
localized excitations in both discrete@7,8# and continuum@9#
systems has been emphasized recently. In particular, it
shown in Ref.@7# that a pinned, discrete breather could b
come mobile by exciting a spatially antisymmetric trans
tional ~‘‘pinning’’ ! mode above a threshold value. Thus w
find that the role of the breathing mode in the switchi
process is analogous to the role of the translational mod
the depinning process.

We consider the nonlocal discrete nonlinear Schro¨dinger
equation of the form

i ċn1 (
mÞn

Jn2m~cm2cn!1ucnu2cn50, ~1!

where the long-range dispersive coupling is taken to be
ther exponentiallyJn5Je2bunu or algebraicallyJn5Junu2s

decreasing with distancenÞ0. In both cases, the constantJ
will be normalized such that(n51

` Jn51 for all b or s. The
ordinary nearest-neighbor DNLS equation is then recove
in the limits b→` and s→`, respectively. Like the ordi-
nary DNLS equation, Eq.~1! has two conserved quantities
namely, the norm~excitation number! N5(nucnu2 and the
Hamiltonian@5#.

Stationary statescn
(L)(t) are time-periodic solutions to

Eq. ~1! of the formcn
(L)(t)5fneiLt, wherefn is time inde-

pendent. To investigate the time evolution of an initia
small perturbation«n(0) of a stationary state, we follow th
approach in@1# and writecn(t)5eiLt@fn1«n(t)#. Decom-
posing «n into real and imaginary parts«n

(r ) and «n
( i ) and

linearizing aroundcn
(L)(t), we obtain

d

dt S «n
~r !

«n
~ i ! D 5MS «n

~r !

«n
~ i ! D 5S 0

2H2

H1

0 D S «n
~r !

«n
~ i ! D , ~2!

where for a system withN sites, H1 and H2 are N3N
matrices defined by Hi j

65@L2(271)f i
212#d i , j2Ji 2 j

~with J050!. Thus we obtain information about the dynam
ics close to the stationary state by studying the eigenvaluem
and eigenvectors (jn ,hn)T of the 2N32N matrixM @1,10#.
4739 © 1998 The American Physical Society
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By definition, the solutioncn
(L)(t) is linearly stableif the

perturbation «n(t) as calculated from Eq.~2! remains
bounded for all times. Linear stability is then equivalent
the matrixM having no eigenvalues with a positive re
part, which, due to the symplectic nature of Eq.~2!, means
that all its eigenvalues must be located as complex-conju
pairs on the imaginary axis. By changing some param
~e.g.,L or J!, a stable state might become unstable, which
seen as two eigenvalues of the matrixM colliding and leav-
ing the imaginary axis. The ‘‘direction’’ in which an initia
perturbation will grow is then determined by the eigenvec
corresponding to the eigenvalue ofM with a positive real
part. In the stable case, the eigenvectors correspondin
eigenvalues ofM on the imaginary axis can be of two di
ferent types: extended, corresponding to a continuous s
trum in the limit N→`, or localized, corresponding to
discrete spectrum. We will here be particularly interested
the localized eigenvectors since they correspond to the in
nal modes of the stationary states through which the swi
ing between states can occur. Since the location of the c
tinuous spectrumm(k) can be analytically determined from
the linear dispersion relation of Eq.~2! with fn[0, we can
numerically identify the localized eigenmodes as cor
sponding to eigenvalues outside the linear band. For
ample, when the coupling is exponentially decreasing w
exponentb, the continuous spectrum is given by the inte
vals on the imaginary axis whereum(k)uP@L,L14(1
1e2b)21#.

As was shown in Ref.@5#, stationary states that are sp
tially symmetric and localized with a single maximum at
lattice site~‘‘on-site’’ states or ‘‘single-site breathers’’! are
linearly stable if and only if the well-known@3,12# condition
]N/]L.0 is fulfilled. In Fig. 1~a! we show the dependenc
N~L! for the on-site state in the case of exponentially d
creasing couplingJn ~the corresponding curve for algebr
ically decreasing coupling was plotted as Fig. 2 in Ref.@5#!.
For b*1.70 the norm is a monotonically increasing functi
of the frequencyL, implying that the state is linearly stabl
for all L, while for b&1.70 the curve is nonmonotonic, im
plying the simultaneous existence of three stationary st
with different frequencies, two of which are stable and o
unstable, having the same norm for some values ofN. To be
specific, we will in the following mainly discuss the caseb
51.0, where multistability occurs in the interval 3.23&N
&3.78.

The results obtained from a numerical diagonalization
the matrixM in Eq. ~2! for b51.0 are illustrated in Fig.
1~b!. We find that for large values ofL (L*1.93), i.e.,
when the stationary state is strongly localized, there is
discrete spectrum and consequently the stationary state
no localized internal mode. WhenL'1.93, an eigenvalue
m (s) corresponding to a spatially symmetric breathing mo
bifurcates off the band edge of the continuous spectrum
k50. As is seen from Fig. 1~b!, this eigenvalue approache
zero along the imaginary axis for a further decrease ofL, and
for L'0.76 it becomes real and the state becomes unsta
DecreasingL further results in an instability that grows unt
m (s) reaches a maximum value and then becomes we
again asm (s) approaches zero. AtL'0.39 the eigenvalue
returns to the imaginary axis and the state, which now ha
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continuumlike nature, is again stable. AsL→0, m (s) ap-
proaches the band edge of the continuous spectrum, bu
find that a localized breathing mode exists also close to
continuum limit. Furthermore, as is seen in Fig. 1~b!, a sec-
ond eigenvaluem (a), corresponding to a spatially antisym
metric translational mode, bifurcates from thek50 band
edge atL'0.51. Since the appearance of a translatio
mode implies that the stationary state gains mobility t
increases asm (a) approaches zero@7#, the continuumlike
state will have a high mobility~in particular for L&0.25
wherem (a) is very close to zero!.

The scenario described above and illustrated in Fig. 1~b!

FIG. 1. ~a! DependenceN~L! for stationary on-site localized
solutions to Eq.~1! with Jn exponentially decreasing. From top t
bottom in the left part of the figure,b50.5, b51.0, b51.5, b
52.0, andb→`, respectively.~b! Eigenvaluesm of the matrixM
in Eq. ~2! versusL for b51.0. The solid~dotted! line shows the
imaginary ~real! part of the eigenvaluem (s) corresponding to the
spatially symmetric, localized mode; the dash-dotted line shows
imaginary part of the eigenvaluem (a) corresponding to the transla
tional mode; the straight dashed line shows the lower bound of
continuous spectrum.~The spectrum is symmetric aroundm50.!
The inset in~b! shows, from top to bottom atn5n0531, fn /AN,
hn

(s) , and 2 i jn
(s) , respectively, wherefn is the stationary state

used as the initial condition in Fig. 2~a! and (jn
(s) ,hn

(s))T is the
corresponding normalized eigenvector of the matrixM with eigen-
valuem (s)'0.286i ~choosing the overall phase so thathn

(s) is real
and positive!.
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FIG. 2. ~a! Switching from a continuumlike to a discrete stat
where the initial statefn has frequencyL'0.310 andN53.6. The
main figure shows the time evolution ofucn0

(t)u2 when a phase
torsion is applied to the central site witha50.261 ~lower curve!
anda50.262~upper curve!, respectively; the inset shows the tim
evolution ofucn(t)u2 for a50.262.~b! Switching from a discrete to
a continuumlike state, where the initial statefn has frequencyL
'1.423 andN53.6. The main figure shows the time evolution
ucn0

(t)u2 with a520.490 ~upper curve! and a520.491 ~lower
curve!, respectively; the inset shows the time evolution ofucn(t)u2

for a520.491 ~only a part of a larger system is shown!. ~c!
Threshold value of the phase torsiona th versusL. Switching occurs
whenuau.ua thu anda.0 (a,0) for an initial continuumlike~dis-
crete! state. In all figures,b51.0.
remains qualitatively unchanged for all values ofb&1.70
and also for the algebraically decaying coupling with 2,s
&3.03, where multistability occurs. When increasingb ~or
s! the maximum value attained bym (s) in the instability re-
gime decreases; forb*1.70 (s*3.03) m (s) stays imaginary
for all L where it exists and no instability develops.

An illustration of how the presence of an internal brea
ing mode affects the dynamics of a slightly perturbed sta
stationary state is given in Fig. 2. To excite the breath
mode, we apply a spatially symmetric, localized perturb
tion, which we choose to be norm conserving in order no
change the effective nonlinearity of the system. The simp
choice, which we have used in the simulations shown here
to kick the central siten0 of the system att50 by adding a
parametric force term of the formadn,n0

d(t)cn to the left-
hand side of Eq.~1!. As can easily be shown, this perturb
tion affects only the siten0 at t50 and results in a ‘‘twist’’
of the stationary state at this site with an anglea, i.e.,
cn0

(0)5fn0
eia. From a biophysical point of view, such

kick may occur as a consequence of the interaction betw
a biomolecule and solvent molecules and ions~ligands!.
Namely, an instantaneous attachment and detachment
ligand to the molecule leads to a local, instantaneous
quency change for its vibrational units, and in a rotatin
wave approximation a DNLS equation with the addition

FIG. 3. Switching from a discrete state to a moving, continuu
like state. The initial statefn is the same as in Fig. 2~b!, but with an
initial perturbation containing also a spatially antisymmetric co
ponent (̧ 520.1). In~a!, the phase torsion at the central site is ju
below threshold for switching (a520.47), while in ~b! it is just
above (a520.48) ~only a small part of a larger system is shown!.
Note that the threshold for switching is slightly smaller than in F
2~b!.
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parametric force term considered here can be derived@13#.
The immediate consequence of the kick is, as can be

duced from the form of Eq.~2!, that (d/dt)(ucn0
u2) will be

positive ~negative! when a.0 (a,0). Thus, to obtain
switching from the continuumlike state to the discrete st
we choosea.0, while we choosea,0 when investigating
switching in the opposite direction. We find that in a lar
part of the multistability regime there is a well-define
threshold valuea th such that when the initial phase torsion
smaller thana th periodic, slowly decaying breather oscilla
tions around the initial state will occur, while for stron
enough kicks ~phase torsions larger thana th! the state
switches into the other stable stationary state, around w
breather oscillations develop@see Figs. 2~a! and 2~b!#. The
numerically calculated dependence ofa th on L is plotted in
Fig. 2~c!. Since also some extended eigenmodes are exc
by the perturbation, there will be some radiation escaping
infinity as t→`, so that the norm of the final state after th
switching process will be slightly smaller than the initi
norm. In the cases considered in Fig. 2, we estimate the n
of the final localized states to be approximately 3.5. Due
the radiative losses, the switching occurs only once whea
is close toa th . However, when the phase torsion is cons
erably larger than the threshold value, we have also obse
situations where multiple switching between the states
curs @14#.

We stress that the particular choice of perturbation is
important for the qualitative features of the switching,
long as there is a substantial overlap between the pertu
tion and the internal breathing mode. For example,
breathing mode corresponding to the continuumlike stat
spatially rather extended, as can be seen from the inse
Fig. 1~b!, and thus an initial perturbation where the kick
applied to more than one site is a closer approximation to
mode. We found, e.g., that kicking the three central s
with the same strengtha in this case gave a slightly lowe
threshold valuea th , but no qualitative changes in the dy
namics. The threshold value and the radiative losses wo
be minimized if the initial perturbation was chosen exactly
ev
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the direction of the breathing mode, but we consider suc
perturbation to be somewhat artificial since in a real syst
such as a biomolecule the exact shape of the breathing m
in general cannot be assumed to be known. Also, we bel
that the mechanism for switching described here can be
plied for any multistable system where the instability is co
nected with a breathing mode. For example, we observe
similar switching behavior in the nearest-neighbor DNL
equation with a higher degree of nonlinearity, which
known @3# to exhibit multistability.

Since in the simulations discussed above the initial p
turbations are spatially symmetric, also the potentially m
bile broad states@e.g., the final state in Fig. 2~b!# remain
static, their translational modes being unexcited. Howev
by including also a spatially nonsymmetric component in
perturbation, a moving, broad excitation will result if also t
translational mode is excited above its threshold value@7#.
~This could, e.g., be the result of including a small rando
noise corresponding to thermal fluctuations.! An example
where the use of an initial perturbation having both a s
tially symmetric and an antisymmetric part leads to a dir
switching from a narrow, pinned state to a broad, mov
state is shown in Fig. 3. Here the initial perturbation has
form cn(0)5fnei¸(n2n0)eiadn,n0.

In conclusion, we have shown how the excitation of
internal breathing mode above a threshold value can lea
switching between bistable pinned and mobile nonlinear
calized excitations and indicated how this mechanism m
be used as a model for the control of storage and transpo
energy in biomolecules.
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